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Abstract

Major developments in a new promising approach to Automatic Target Detection and Recog-
nition have taken place this year building off of previous research developments in Polanzatlon
Vision. Preliminary results have already demonstrated tangible enhanced capabilities for RSTA i in
the UGV program for Detection of heavily occluded military vehicles, woodland camouflage nets,
and, augmented features for Target Recognition. Basic research in Polarization Vision has continued
with the development of a material classification method having the capability of detecting metallic
materials under polarized illumination of clear skylight, complementary in nature to existing meth-
ods. New photometric invariants have been discovered for object recognition under multiple light
illumination based upon the relationship between the local covariance matrix of photometric values
and Gaussian curvature. For 3-D images in Medical Imaging of complex tubular anatomy (e.g.,
lung bronchial and vascular trees) accurate automated methods have been developed for extraction
of central axis geometry which is of large importance to medical researchers.

1 Automatic Target Detection And Recognition
1.1 A New Approach

Polarization vision is an important visual extension to both intensity and color to which hu-
man vision is oblivious [13], [15]. There are polarization parameters of light that are physically
orthogonal to color and intensity and that are therefore immune to modified or degraded extrinsic
“appearance” of objects created by intensity and/or color camouflage, and, clutter. These polariza-
tion parameters are instead directly related to the intrinsic material composition, surface roughness,
and, shape of objects. This gives strong physical motivation for applying such a sensory modality
towards the goal of detecting and recognizing target objects that independent of extrinsic intensity
and color appearance have material composition, surface properties and/or geometric properties
that differ from surrounding terrain. Decoys (e.g., a painted military vehicle on canvas) that are




made to have the extrinsic appearance of a target may be distinguished in the polarization domain
if they differ in material and geometric characteristics from actual targets. As Polarization Vision is
an augmentation of intensity and orthogonal to color, sensed polarization of light reflected from mil-
itary target vehicles naturally provides an augmentation of distinctive signatures that can be used
to more accurately recognize a vehicle. Model-based recognition of target vehicles can additionally
include polarization signatures taken from a compiled database of empirical polarization imagery
for different viewing aspects of the vehicle with respect to different solar-viewing geometries and
weather conditions. Such a database is currently being compiled for several military vehicles. Fur-
thermore, polarization reflectance models have been developed incorporating skylight distributed
illumination and polarization incident on vehicle surface geometry with specified intrinsic mate-
rial composition and roughness, accurately predicting salient polarization signatures for vehicles
observed in empirical polarization imagery. Not only does this provide a solid physical founda-
tion upon which to base target detection/recognition using polarization signatures, but predictive
modeling can enhance recognition and/or detection of vehicles with only knowledge of the physical
characteristics of vehicles if empirical image data is absent or incomplete. In the reverse direction,
predictive modeling provides constraints on geometry (e.g., pose of a target) and intrinsic material
composition that can be derived from observed reflected polarization.

While Polarization Vision by itself for detecting and recognizing targets is not foolproof, prelim-
inary empirical results show that to evade some of the additional capabilities afforded by polar-
ization sensing would require significantly more sophisticated countermeasures than are currently
being used. In combination with Automatic Target Detection and Recognition methodologies using
other sensor modalities such as multispectral visible and FLIR, as well as LADAR sensing, prelimi-
nary experimentation with Polarization Vision appears to provide a new domain of complementary
information supporting fusion with these other modalities for increased effectiveness.

1.2 New Sensors For RSTA: Visible, Color, and FLIR Polarization Cameras

Publications in the ARPA TUW Proceedings over the past few years have described progress in
the development of new types of fully automated sensors called polarization cameras by the Johns
Hopkins Computer Vision Laboratory [12], [13]. Recent innovations in modular design have made
it possible to build portable Liquid Crystal Polarization Cameras that can rapidly and accurately
acquire high resolution polarization imagery outdoors and underwater. Electro-optical switching of
liquid crystals in front of a fixed linear polarizer obviates the need for mechanically rotating the
polarizer for obtaining polarization component images. Recently we have been able to achieve 10Hz
partial linear polarization images doubling our last reported rate of 5Hz.

In the past year Johns Hopkins together with Lockheed-Martin has installed a liquid crystal
polarization camera sensor atop a HMMWYV (High Mobility Multi-Wheeled Vehicle) scout vehicle at
the Lockheed Martin, Denver Colorado facility. See Figure 1. Modular electronic and electro-optical
components have been installed directly onto an existing COHU color video sensor used as part of the
RSTA sensor suite for the Army/ARPA UGV (Unmanned Ground Vehicle) program. Supporting
image acquisition and image processing software were ported to Lockheed-Martin, compatible with
the Datacube and VXWorks configuration aboard the three HMMWVs used in the UGV program.
Currently, polarization imaging capability is available in the visible spectrum, and for separate Red,
Green, and, Blue spectral bands. A number of polarization images have been acquired and some




Figure 1: Polarization camera (left) installed on top of a HMMWYV scout vehicle (right) at Lockheed-
Martin, Denver Colorado Facility. White box in right image shows where camera is located on
vehicle.

preliminary results are shown in the next subsection.

Polarization capability is also being added to an existing 3-5 micron FLIR sensor on one of
the HMMWV’s (also a part of the RSTA sensor suite) at the Lockheed-Martin Denver Facility.
Johns Hopkins is currently installing specially customized IR polarization filters that will enable
the acquisition of partial linear polarization images for both night operation and analysis of the
polarization of thermal emissions from target vehicles.

1.3 Preliminary Empirical Results For Visible Polarization

A large initial dataset of polarization imagery has been collected with the polarization camera
shown in Figure 1, of various military vehicles including an Armored Personell Carrier, M-60 tank,
Bradley Fighting Vehicle, and M-35 truck. The most comprehensive polarization imagery and
analysis has been done on a HMMWYV (i.e., separate from the scout vehicles) for various viewing
aspects, solar-illumination geometry and weather, and for various levels of occlusion and camouflage
with Army Woodland camouflage nets. A more detailed summary of results are shown in a paper
in this proceedings [16]. '

Figure 2 shows intensity and polarization images of a HMMWYV vehicle. The polarization image
reveals an augmented description in terms of shape and pose constraints on the geometry of the
vehicle, with different color hues (grey tones for black-white version) representing orientation of
reflected linear polarization directly related to surface normal constraints. Polarization reflectance
modeling has been developed that can predict the same polarization-based signature from a geo-
metric, material composition, and, surface roughness model for various portions of the HMMWV
as discussed below and in the paper [16]. Not only is this polarization signature quite distinctive
with respect to background terrain and other vehicles (e.g., the distribution of reflected linear po-
larization orientations around a three-way corner at the rear of the vehicle) but it is extremely easy




to distinguish this from a painted canvas decoy which would give a flat single orientation linear
polarization signature.

Figure 3 shows an intensity image (left) and a thresholded polarization image (right) of the same
HMMWYV as in Figure 2 in this scene heavily occluded by high bushes so that only the roof of
the vehicle is in direct view. Making up only a small portion of the total area of the scene and
blending in with background terrain can make the presence of such a vehicle difficult to detect.
A polarization image thresholding out lower degree of polarization (right image) reveals only the
roof of the HMMWYV in color thresholding it out from background terrain having significantly less
degree of polarization. The hue chromaticity (grey tone for black-white version) in this image not
only highlights the presence of significant degree of polarization coming from the roof of the vehicle
in the scene, but reveals a constraint on how the roof of the vehicle is oriented.

Figure 4 shows an intensity image (left) and a thresholded polarization image (right) of again
the same HMMWYV but in this scene completely draped with U.S. Army Woodland camouflage
nets, and partly occluded by a bush. Even though the camouflage nets have the same color and
texture appearance as other background vegetation, reflected polarization is directly related to the
intrinsic material composition invariant to intensity/color appearance. The Magenta color (grey
tone for black-white version) in the right image is used as a label showing where the degree of
polarization is above 0.3 in the scene picking out the camouflage and visually highlighting detection
of the target. Apparently man-made materials have polarization properties that are distinct from
natural materials. The thresholded polarization images shown in Figures 3 and 4 illustrate how
polarization signatures are immune to clutter caused by extrinsic variations in reflected color and
intensity. Polarization vision can therefore detect important information that may not be evident
with other sensor modalities. It should be noted that the net camouflage in Figure 4 is made to be
stealthed to radar.

1.4 Predictive Reflectance Modeling For Outdoor Scenes

Figure 5 shows the predicted orientation of reflected linear polarization under approximately
the same skylight illumination distribution as the scene in Figure 2, for two different rendered
poses of the HMMWYV. The colors (grey tones for black-white version) representing orientation
of reflected linear polarization in the left rendered image consistently match those observed in
Figure 5. The different colors (grey tones for black-white version) rendered for the left image of
Figure 5 demonstrates how the orientation of reflected linear polarization is strongly dependent
upon the pose of the HMMWYV. In fact, for views of a vehicle where multiple surface orientations
are visible (typically 2 or more surface orientations) the pose of the vehicle may be accurately
estimated through consistent matching of reflected polarization orientations. For instance, while
the orientation of reflected polarization is the same for the roof of the vehicle in both poses, other
visible surface orientations produce significantly different orientations of reflected linear polarization.
This can be combined with more classical approaches to pose estimation using geometric projection.
Comparing the pose of the HMMWYV rendered in the right image with the polarization image of
Figure 2 illustrates a good pose estimation. There are no other poses producing a nearly consistent
combination of orientations of reflected linear polarization.

Take note that while the windows and side panel on the right side of the HMMWYV vehicle have
similar surface orientation, the orientation of reflected linear polarization is significantly different




Figure 2: Intensity Image (left) and Polarization Image (right) of a HMMWYV under partly cloudy
sky with sun obstruction.
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Figure 3: Intensity Image (left) and thresholded Polarization Image (right) of a HMMWYV heavily
occluded by vegetation under a sunny sky.




Figure 4: Intensity Image (left) and thresholded Polarization Image (right) of a HMMWYV partly
occluded by vegetation and with U.S. Army Woodland Camouflage draped over the top, under
sunny sky.

Figure 5: Rendered polarization images for two poses of HMMWYV under same sky illumination
conditions as in Figure 2 from predictive polarization reflectance modeling (back and hind of wheels
are in shadow)




due to the window surface being smooth and the painted side panel being rough and therefore
“averaging” the reflected polarization of light incident from multiple directions. This demonstrates
the significant dependence of the orientation of reflected linear polarization upon surface charac-
teristics such as roughness. Predictive reflectance modeling of this sort is important for physically
understanding polarization signatures towards the goal of recognition and detection. More details
in [16]. '

2 Basic Research In Polarization Vision

While Johns Hopkins is building upon previous basic research in polarization vision for applica-
tion to Automatic Target Detection and Recognition, basic research into novel methodologies for
polarization vision continues.

2.1 Polarization-based Material Classification Under Polarized Illumination

In [10], [11], a practical polarization-based technique was developed that could differentiate at a
pixel in an image materials according to electrical conductivity, with metal (electrically conduct-
ing) and dielectric (non-electrically conducting) at the extremes. This technique is based upon the
relationship between the measurement of the ratio of maximum and minimum polarization compo-
nents and the polarization Fresnel ratio, under the assumption of unpolarized incident illumination.
A disadvantage of this polarization-based method is that it becomes inaccurate when the diffuse
component of reflection is not small compared with the specular component. For instance, this
method will misclassify highly diffuse white paper as metal. Because this previous polarization-
based method assumes incident unpolarized light, detection of metallic objects illuminated by the
partially linear polarized light from clear or partly cloudy sky (e.g., for automatic target detection
and recognition) has also been a problem.

A recently developed technique by Chen and Wolff [3] based upon the polarization phase of a light
wave, has been shown to function quite well under almost all conditions which have been previously
problematic to the above existing material classification technique. The phenomenon of polarization
phase is seen in varying states of elliptical polarization where the shape and orientation of the
ellipse is determined by the relative phase difference between orthogonal light wave components
(e.g., circular polarization results from orthogonal light waves being 1 /4 wavelength relatively phase
shifted). Polarization phase has been used before to aid in the determination of surface orientation
for dielectric objects [7]. The distinction between metal and dielectric with respect to phase of
polarization is that metal retards light waves and therefore alters the phase of polarization of
incident light upon specular reflection whereas dielectrics do not at all alter the phase of polarization
of incident light. For instance, linearly polarized incident light will become elliptically polarized
when reflected from a metal, but remain linearly polarized when reflected from a dielectric. The
distinction between metal and dielectric material is therefore determined by whether there is a
measurable retardance between the polarization phase of incident and reflected light with respect
to an object. One way of measuring phase retardance is by measuring all four Stokes parameters of
polarization such as what is accomplished in precise measurements for astronomy observations or
by a measurement apparatus used in [7]. Such an experimental approach is usually unacceptable
in a number of machine vision applications where either real-time response is required or the scene
can move or change rapidly. An experimental advance is presented in [3] whereby a much simpler
methodology for measuring retardance without having to measure all four Stokes parameters that




is extremely sensitive to small shifts in phase. Furthermore, this experimental methodology can be
performed utilizing a trivial modification to existing polarization sensing cameras [18] by affixing a
quarterwave plate, making it possible to implement this technique at near real-time rates.

The new polarization phase based technique by Chen and Wolff 3] is applicable to scenes where
incident illumination contains any non-zero magnitude component of linear polarization at any ori-
entation except parallel or perpendicular to the plane of incidence. These illumination conditions
are complementary to the existing polarization-based technique [11] where incident illumination is
unpolarized. A key advantage of this polarization phase-based technique is that it can be utilized to
determine metal /dielectric objects illuminated outdoors by a clear or partly cloudy sky, as skylight is
partially linear polarized according to Rayleigh’s Law [2]. Combined with the existing polarization-
based method which can detect metal/dielectric objects under cloudy (unpolarized) skies these
methods can provide important information for automatic target detection and recognition algo-
rithms under almost any sky condition. Another key advantage of the presented polarization-based
technique is that even if specular reflection from a conductive surface is accompanied by a much
larger diffuse reflection component, the measurement of retardance is limited only by the signal-to-
noise ratio of the camera sensor being larger than the ratio of diffuse to specular reflection. This
technique is so sensitive to the retardance of the linear polarized component, that phase shifting can
be detected for most metals close to normal incidence, and close to grazing. In the laboratory where

lighting is easily controlled, material classification performs very accurately using this technique.

2.2 Technology Transfer of Polarization Vision For Better Accuracy Of Laser Scanner Range
Finders

A popular method for deriving depth maps of shiny objects, such as metallic machine parts,
is by triangulation using a laser scanner. The derivation of depth depends upon the assumed
geometry of mirror specular reflection. Unfortunately a fundamental problem of obtaining accurate
depth maps of highly specular objects in this manner is that there are commonly second and higher
order specular inter-reflections. If inter-reflections are falsely interpreted as primary mirror specular
reflection, then computed depth will be highly inaccurate since the inter-reflection arises from falsely
assumed geometry.

Researchers at Heriot-Watt University, Edinburgh, Scotland are currently developing a laser s-
canning range finder system incorporating polarization vision techniques for distinguishing primary
specular reflections from higher order reflections [4], [5]. Johns Hopkins Computer Vision Labo-
ratory has been collaborating on the theoretical aspects of this work. The basic concept is that
the polarization state of higher order specular reflections is quite distinct from that of primarily
specularly reflected light.

3 Surface Covariance and Gaussian Curvature: An Invariant Local De-

scriptor For Object Recognition
Past work by Wolff and Fan [17], and, Fan and Wolff [6] developed multiple illumination methods
for identifying hyperbolic, parabolic, and, elliptical points (i.e., points of negative, zero, and positive
Gaussian curvature respectively) with only very approximate knowledge of incident illumination.
Such local characteristics at points on smooth objects are important due to their invariance to
rotation and translation (i.e., pose) of the object, and can be therefore used for object recognition.




Recent work by Angelopoulou et al. [1] uses multiple illumination with only approximate knowl-
edge of incident direction of such illumination to produce a richer description of local curvature
for the purpose of object recognition. Under the assumption of Lambertian reflectance (shown to
be a good approximation under restricted conditions [14]) it is shown that the determinant of the
covariance matrix at each pixel formed from the local image neighborhood of photometric triples
is an invariant with respect to rotation of a smooth object, and that the determinant of this co-
variance matrix is proportional to the absolute value of the Gaussian curvature at a surface point.
The distribution of the determinant of the covariance matrix is seen to be a stable signature over a
wide range of poses for a given object, and such signatures vary significantly for objects of different
shape. To make this signature scale invariant with respect to object size, Angelopoulou et al. [1]
compute the medians of quantiles over the distribution (e.g., the median of the lowest 10% of de-
terminant values for the covariance matrix, the median of the next 10% of values, etc...). Figures 6
and 7 show empirical results for different poses of a golf tee and a mug, respectively, the larger the
determinant of the local covariance matrix, the darker the value. The presence of specularities gives
the appearance of increased curvature (darker values). The graph in Figure 8 takes the medians
in deciles and shows the stability of these signatures over the range of the poses shown. Note the
difference in the graph signatures.

4 Geometric Analysis of Complex Tubular Anatomy in 3-D Medical
Imaging

The capability of accurately extracting geometric features from 3-D medical imagery is becoming
more and more important for medical diagnosis. Geometric analysis of complex tubular anatomical
structures is important for analysis of lung bronchial trees and vascular structures. An important
aspect of this is accurate derivation of the geometry for the “central axis tree” for the tubular
structure (e.g., from which the angles of bifurcations can be directly computed). We have taken
two approaches to the computation of the central axis tree for complex tubular anatomy, the first
involves region growing and optimization, Chandrasekhar et al. [8] the second involves a vector
field formulation Williams and Wolff [9]. These methods have in common that they either derive
or utilize the centroid points of cross section areas along the tubular structure.
4.1 Derivation of Central Axis Using Region Growing and Optimization

Starting from the root of the tubular tree structure an expanding region is grown out (Top-Down)
to establish the topological connectivity along the tree. Once connectivity has been established a
second pass grows an expanding region from each of the bottoms of the tree structure (Bottom-
Up), the local orientation of the expanding boundary front for these growing regions defining a
cut plane along the tree. Growing from Bottom-Up if two branches meet at a node (guided by
the connectivity information established on the first pass Top-Down), the new center of expansion
becomes that bifurcation node. The centroids of the respective cut-planes are computed and a least
squares optimization fitting of straight axes meeting in a 3-way junction is computed. This proceeds
all the way back up the tree. This is pictorially summarized in Figure 9
4.2 Derivation of Central Axis Using A Vector Field Approach

The main concept here is to extract a vector “flow field” along the tubular structure for which
cut planes are determined to be the most normal too. The centroid points of these cut planes define
the central axis with the flow field vector at each point defining the orientation along the central




Figure 6: Relative size of the determinant values for the local covariance matrix for different poses
of a golf tee (dark-high value, light- low value).

Figure 7: Relative size of the determinant values for the local covariance matrix for different poses
of a coffee mug (dark-high value, light- low value).
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Figure 9: Pictorial summary of region growing and optimization method for central axis tree deriva-
tion.
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axis. This approach is perhaps more general due to its additional suitability for tubular structures
that are curved, such as for vascular trees. The vector flow field is derived from the “escape vector
field” which at each point in the tubular tree volume defines the direction of the least distance to
escape from the volume. The flow vector at a point in the tubular structure volume is the vector
most normal to the escape vectors within a local 3-D neighborhood of that point. Figure 10
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Figure 10: Central axis tree derived from empirical tubular tree structure using vector field method.
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